My-library.info
Все категории

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]. Жанр: Радиотехника издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Искусство схемотехники. Том 1 [Изд.4-е]
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
285
Читать онлайн
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.

Искусство схемотехники. Том 1 [Изд.4-е] читать онлайн бесплатно

Искусство схемотехники. Том 1 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц

И наконец, в двух словах история туннельных диодов: они появились в конце 50-х годов, и с ними сразу стали связывать пути разрешения множества проблем схемотехники. Их высокое быстродействие дало основание предположить, что они произведут революцию в области вычислительной техники. К сожалению, оказалось, что эти элементы сложны в использовании; это обстоятельство, а также успешное развитие транзисторов привело к тому, что туннельные диоды сейчас почти не находят применения.

Позже при рассмотрении активных фильтров мы вернемся к явлению отрицательного сопротивления. Тогда вы познакомитесь со схемой преобразователя отрицательного импеданса, которая обеспечивает наряду с другими характеристиками настоящее (а не динамическое) отрицательное сопротивление.

Сигналы

Следующий раздел главы посвящен конденсаторам — элементам, свойства которых зависят от того, как изменяются в схеме напряжения и токи.

Закономерности, с которыми мы познакомили вас при изучении цепей постоянного тока (закон Ома, эквивалентные преобразования схем и др.), сохраняют свою силу и в тех случаях, когда напряжения и токи изменяются по времени. Для лучшего понимания работы цепей переменного тока полезно изучить некоторые распространенные типы сигналов (напряжений, которые определенным образом изменяются во времени).


1.07. Синусоидальные сигналы

Синусоидальные сигналы распространены наиболее широко; именно их мы извлекаем из стенной розетки. Если вы услышите выражение «10 мкВ на частоте 1 МГц», то знайте, что речь идет о синусоидальном сигнале. Математическое выражение, описывающее синусоидальное напряжение, имеет вид

U = Asinft,

где А — амплитуда сигнала, f — частота в циклах в секунду или в герцах.

Синусоидальный сигнал показан на рис. 1.17.



Рис. 1.17. Синусоидальная зависимость изменения амплитуды А от частоты f


Иногда бывает полезно переместить начало координат (t = 0) в точку, соответствующую произвольному моменту времени; в этом случае в выражение для синусоидального напряжения следует включить фазу

U = Asin(2πft + )

Можно также воспользоваться понятием угловая частота и переписать выражение для синусоидального сигнала в другом виде:

U = Asinωt,

где ω — угловая частота в радианах в 1 с.

Если вы вспомните, что ω = 2πf, то все станет на свои места. Основное достоинство синусоидальной функции (а также основная причина столь широкого распространения синусоидальных сигналов) состоит в том, что эта функция является решением целого ряда линейных дифференциальных уравнений, описывающих как физические явления, так и свойства линейных цепей. Линейная цепь обладает следующим свойством: выходной сигнал, порожденный суммой двух входных сигналов, равен сумме двух выходных сигналов, каждый из которых порожден входными сигналами, действующими не в совокупности, а отдельно: иначе говоря, если Вых. (А) — выходной сигнал, порожденный сигналом А, то для линейной цепи справедливо следующее равенство: Вых. (А + В) = Вых. (А) + Вых. (В). Если на входе линейной цепи действует синусоидальный сигнал, то на выходе также получим синусоидальный сигнал, но в общем случае его амплитуда и фаза будут другими. Это утверждение справедливо только для синусоидального сигнала. На практике принято оценивать поведение схемы по ее амплитудно-частотной характеристике, показывающей, как изменяется амплитуда синусоидального сигнала в зависимости от частоты. Усилитель звуковой частоты, например, имеет «плоскую» амплитудно-частотную характеристику в диапазоне от 20 Гц до 20 кГц.

Частота синусоидальных сигналов, с которыми чаще всего приходится работать, лежит в диапазоне от нескольких герц до нескольких мегагерц. Для получения очень низких частот, от 0,0001 Гц и ниже, достаточно аккуратно построить нужную схему. Получение более высоких частот, например до 2000 МГц, также не вызывает принципиальных трудностей, но для сигналов такой частоты нужны специальные линии передач и специальные приемы передачи. Кроме того, здесь приходится иметь дело с микроволновыми сигналами, для которых не подходят привычные схемы, состоящие из отдельных элементов, соединенных между собой проводами, а нужны специальные волноводы.


1.08. Измерение амплитуды сигналов

Оказывается, амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: Uэфф = (1/√2)А = 0,101А или 2А/Uэфф = 2√2 (это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение двойной амплитуды к эффективному значению будет другим). Пусть вас не удивляет, что сигнал часто характеризуется эффективным значением; дело в том, что именно эффективное значение используется для определения мощности. В США напряжение в сети имеет эффективное значение 117 В и частоту 60 Гц. Амплитуда этого напряжения равна 165 В (двойная амплитуда составляет 330 В).

Изменение амплитуды в децибелах. Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал X в два раза больше, чем сигнал Y. Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах, это дБ = 20·lg(A2/A1), где А1 и А2  — амплитуды двух сигналов.

Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, а если один сигнал в 10 раз меньше другого - то -20 дБ. Отношение мощностей двух сигналов определяется так:

дБ = 10·lg(P2/P1),

где Р1 и Р2 — мощности двух сигналов.

Если оба сигнала имеют одну и ту же форму, т. е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).

Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной.

Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ — эффективное значение 1 В; б) дБВт — напряжение, соответствующее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот — 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп — небольшой шумовой сигнал, генерируемый резистором при комнатной температуре (об этом более подробно пойдет речь в разд. 7.11).

Помимо перечисленных существуют эталонные сигналы для измерений в других областях. Например, в акустике уровень звукового давления 0 дБ соответствует сигналу, среднее квадратурное давление которого составляет 0,0002 мкбар (1 бар равен 106 дин на квадратный сантиметр или приблизительно 1 атмосфере); в связи уровни определяются в дБС (относительный шум в полосе частот с весовой функцией С). Обращаем ваше внимание на эталонную амплитуду 0 дБ: пользуясь этим значением, не забывайте его оговорить, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 Вэфф», или пользуйтесь условным обозначением дБВ.

Упражнение 1.11. Отношение двух сигналов составляет: а) 3 дБ, б) 6 дБ, в) 10 дБ, г) 20 дБ. Для каждого случая определите отношение напряжений и мощностей сигналов.


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Искусство схемотехники. Том 1 [Изд.4-е] отзывы

Отзывы читателей о книге Искусство схемотехники. Том 1 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.